ANNA UNIVERSITY CHENNAI: CHENNAI – 600 025
B.E DEGREE PROGRAMME CURRICULUM AND SYLLABUS
ELECTRICAL AND ELECTRONICS ENGINEERING
(Offered in Colleges affiliated to Anna University)
CURRICULUM AND SYLLABUS – REGULATIONS – 2004
B.E DEGREE PROGRAMME CURRICULUM AND SYLLABUS
ELECTRICAL AND ELECTRONICS ENGINEERING
(Offered in Colleges affiliated to Anna University)
CURRICULUM AND SYLLABUS – REGULATIONS – 2004
EE 1202 ELECTRICAL MACHINES – I 3 1 0 100
AIM
To expose the students to the concepts of electromechanical energy conversions in D.C. machines and energy transfer in transformers and to analyse their performance.
To expose the students to the concepts of electromechanical energy conversions in D.C. machines and energy transfer in transformers and to analyse their performance.
OBJECTIVES
i. To introduce the concept of rotating machines and the principle of electromechanical energy conversion in single and multiple excited systems.
ii. To understand the generation of D.C. voltages by using different type of generators and study their performance.
iii. To study the working principles of D.C. motors and their load characteristics, starting and methods of speed control.
iv. To familiarize with the constructional details of different type of transformers, working principle and their performance.
v. To estimate the various losses taking place in D.C. machines and transformers and to study the different testing method to arrive at their performance.
i. To introduce the concept of rotating machines and the principle of electromechanical energy conversion in single and multiple excited systems.
ii. To understand the generation of D.C. voltages by using different type of generators and study their performance.
iii. To study the working principles of D.C. motors and their load characteristics, starting and methods of speed control.
iv. To familiarize with the constructional details of different type of transformers, working principle and their performance.
v. To estimate the various losses taking place in D.C. machines and transformers and to study the different testing method to arrive at their performance.
1. BASIC CONCEPTS OF ROTATING MACHINES 8
Principles of electromechanical energy conversion – Single and multiple excited systems – m.m.f of distributed A.C. windings – Rotating magnetic field – Generated voltage – Torque in round rotor machine.
Principles of electromechanical energy conversion – Single and multiple excited systems – m.m.f of distributed A.C. windings – Rotating magnetic field – Generated voltage – Torque in round rotor machine.
2. DC GENERATORS 8
Constructional details – emf equation – Methods of excitation – Self and separately excited generators – Characteristics of series, shunt and compound generators – Armature reaction and commutation – Parallel operation of DC shunt and compound generators.
Constructional details – emf equation – Methods of excitation – Self and separately excited generators – Characteristics of series, shunt and compound generators – Armature reaction and commutation – Parallel operation of DC shunt and compound generators.
3. DC MOTORS 9
Principle of operation – Back emf and torque equation – Characteristics of series, shunt and compound motors – Starting of DC motors – Types of starters – Speed control of DC series and shunt motors.
Principle of operation – Back emf and torque equation – Characteristics of series, shunt and compound motors – Starting of DC motors – Types of starters – Speed control of DC series and shunt motors.
4. TRANSFORMERS 12
Constructional details of core and shell type transformers – Types of windings – Principle of operation – emf equation – Transformation ratio – Transformer on no-load – Parameters referred to HV / LV windings – Equivalent circuit – Transformer on load – Regulation – Parallel operation of single phase transformers – Auto transformer – Three phase transformers – Vector group.
Constructional details of core and shell type transformers – Types of windings – Principle of operation – emf equation – Transformation ratio – Transformer on no-load – Parameters referred to HV / LV windings – Equivalent circuit – Transformer on load – Regulation – Parallel operation of single phase transformers – Auto transformer – Three phase transformers – Vector group.
5. TESTING OF DC MACHINES AND TRANSFORMERS 8
Losses and efficiency in DC machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne’s test, Retardation test and Hopkinson’s test – Testing of transformers – Polarity test, load test, open circuit and short circuit tests – All day efficiency.
Losses and efficiency in DC machines and transformers – Condition for maximum efficiency – Testing of DC machines – Brake test, Swinburne’s test, Retardation test and Hopkinson’s test – Testing of transformers – Polarity test, load test, open circuit and short circuit tests – All day efficiency.
Note : Unit 5 may be covered along with Unit 2,3,and 4.
L = 45 T = 15 Total = 60
L = 45 T = 15 Total = 60
TEXT BOOKS
1. D.P. Kothari and I.J. Nagrath, ‘Electric Machines’, Tata McGraw Hill Publishing Company Ltd, 2002.
2. P.S. Bimbhra, ‘Electrical Machinery’, Khanna Publishers, 2003.
1. D.P. Kothari and I.J. Nagrath, ‘Electric Machines’, Tata McGraw Hill Publishing Company Ltd, 2002.
2. P.S. Bimbhra, ‘Electrical Machinery’, Khanna Publishers, 2003.
REFERENCE BOOKS
1. A.E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, ‘Electric Machinery’, Tata McGraw Hill publishing Company Ltd, 2003.
2. J.B. Gupta, ‘Theory and Performance of Electrical Machines’, S.K.Kataria and Sons, 2002.
3. K. Murugesh Kumar, ‘Electric Machines’, Vikas publishing house Pvt Ltd, 2002.
1. A.E. Fitzgerald, Charles Kingsley, Stephen.D.Umans, ‘Electric Machinery’, Tata McGraw Hill publishing Company Ltd, 2003.
2. J.B. Gupta, ‘Theory and Performance of Electrical Machines’, S.K.Kataria and Sons, 2002.
3. K. Murugesh Kumar, ‘Electric Machines’, Vikas publishing house Pvt Ltd, 2002.
0 comments :
Post a Comment