June 18, 2010

EC 1262 ELECTRONIC DEVICES AND CIRCUITS LABORATORY ANNA UNIVERSITY CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING SYLLABUS


ANNA UNIVERSITY CHENNAI: CHENNAI – 600 025
B.E DEGREE PROGRAMME CURRICULUM AND SYLLABUS
ELECTRICAL AND ELECTRONICS ENGINEERING
(Offered in Colleges affiliated to Anna University)
CURRICULUM AND SYLLABUS – REGULATIONS – 2004
EC 1262 ELECTRONIC DEVICES AND CIRCUITS LABORATORY 0 0 3 100
AIM
To study the characteristics and to determine the device parameters of various solid-state devices.
1. Static Characteristics of transistor under CE, CB, CC and determination of hybrid parameters.
2. Static characteristics and parameter determination of JFET.
3. Static characteristics of semiconductor diode, zener diode and study of simple voltage regulator circuits.
4. Static characteristics of UJT and its application as a relaxation oscillator.
5. Photodiode, Phototransistor characteristics and study of light activated relay circuit.
6. Static characteristics of Thermistors.
7. Single phase half wave and full wave rectifiers with inductive and capacitive filters.
8. Phase shift oscillators and Wien bridge oscillators.
9. Frequency response of common emitter amplifiers.
10. Differential amplifiers using FET.
P = 45 Total = 45
Detailed Syllabus

1. Static Characteristics of transistor under CE, CB, CC and determination of hybrid parameters
Aim
To determine the static characteristics of transistor under CE, CB, CC mode.
Exercise
a. Plot the BJT CE, CB and CC input and output characteristics.
b. Determine the h-parameters hi, ho, hr and hf for CE, CB and CC characteristics from I/P and O/P characteristics.
2. Static characteristics and parameter determination of JFET
Aim
To determine the static characteristics of JFET
Exercise
1. Plot the JFET drain characteristics from the results obtained
2. Plot the JFET transfer characteristics from the results obtained.
3. From the drain characteristics for VGS = 0 determine the value of the rD and YOS parameters.
4. From the transfer characteristic, determine the values of the Yfs parameters at VGS =-1 V and VGS = - 4V.
5. Draw horizontal and vertical scales on the drain characteristics plotted by the XY recorder. Identify each characteristic according to the VGS level. Also, print the JFET type number on the characteristics.
3. Static characteristics of semiconductor diode, zener diode and study of simple voltage regulator circuits
Aim
1. To determine the static characteristics of semiconductor diode and zener diode
2. To study the simple voltage regulator circuits as Op-amp voltage regulator, source effect and load effect measurement, use of current limiter.
Exercise
Semiconductor diode
1. Plot the forward characteristic of the low – current diode and rectifier diode from the results obtained.
2. From the forward characteristics, determine the approximate forward voltage drop and dc forward resistance for D2 and for D2. Also estimate the ac resistance for each diode.
3. Comment on the results of reverse biased diode current measurements.
Zener diode
a. Plot a graph showing the Zener diode reverse characteristics.
b. From the Zener diode reverse characteristics determine the reverse voltage at IZ = 20 mA. Also determine the dynamic impedance for the device.
c. Calculate the line regulation, load regulation and ripple reduction factor produced by the Zener diode regulator.
Voltage regulator
1. Analyze the voltage regulator circuit for ripple reduction, source effect and load effect. Compare the calculated and measured circuit performance.
2. Plot the regulator current limiting characteristics. Analyze the two current limiter circuits and compare the calculated and measured circuit performances.
4. Static characteristics of UJT and its application as a relaxation oscillator
Aim
To determine the static characteristics of UJT.
Exercise
1. Plot the UJT characteristics from the results obtained.
2. Calculate the intrinsic stand – off ratio from the results obtained.
3. Compare the calculated value with the specified value for the UJT.
4. Discuss the waveforms obtained for the UJT relaxation oscillator investigated. Compare the operating frequency with that calculated frequency.
5. Photodiode, Phototransistor characteristics and study of light activated relay circuit
Aim
1. To draw the characteristics of photodiode, phototransistor.
2. To study the light activated relay circuit.
Exercise
Photodiode
1. Plot the photodiode reverse current upon different level of illumination.
2. Draw the dc load line for the circuit and determine the diode currents and voltages at different level of illumination.
Phototransistor
1. Draw the output characteristics IC / VCE of a phototransistor and determine the output voltage at different illumination levels.
2. Bias Phototransistor as a switch. Illuminate the phototransistor to activate a relay.
6. Static characteristics of Thermistors
Aim
To determine the static characteristics of thermistors.
Exercise
1. Draw the resistance / temperature characteristic of a thermistor and determine the resistance value for variations in temperature.
2. Draw the static voltage / current characteristics of a thermistor and determine whether device resistance remains constant until power dissipation is large enough to produce self-heating.
3. Use the thermistor as a temperature-compensating device by increasing the resistance with increasing temperature.
7. Single phase half wave and full wave rectifiers with inductive and capacitive filters
Aim
To construct half wave and full wave rectifiers and to draw their input and output waveforms.
Exercise
1. Plot the input and output waveforms and explain the difference between the two.
2. Explain the effect of open – circuiting of any one diode.
3. Measure the PIV of two-diode full wave rectifier to the bridge rectifier.
4. Calculate the ripple factor of output waveform of inductive and capacitive filter and compare it with measured practical values.
8. Phase shift oscillators and Wien bridge oscillators
Aim
To construct the phase shift oscillator and Wien bridge oscillators and to draw its
output waveforms.
Exercise
1. Discuss the phase shift oscillator and Wien bridge oscillator output waveforms obtained from the experiment. Analyze the circuits and compare the calculated and measured frequencies.
2. Change the capacitor values and discuss the results.
3. Analyze the diode amplitude stabilization circuit for the Wien bridge oscillator and compare the calculated output amplitude to that of the measured values.
9. Frequency response of common emitter amplifiers
Aim
To determine the frequency response of common emitter amplifiers.
Exercise
1. For different values of cut – off frequencies determine suitable values of resistors and capacitors for common emitter amplifiers.
2. Plot the frequency response and determine 3dB bandwidth.
10. Differential amplifiers using FET
Aim
To analyse the characteristics of differential amplifier circuit using FET
Exercise
1. Construct the circuit and
a. Determine differential gain Ad
b. Determine common mode gain Ac
c. Determine the CMRR = Ad / Ac
2. Construct the circuit using common source configuration. Measure i/p – o/p impedance of the circuit.
3. Try the same as common drain circuit (source follower) and check for VDD = 25 V

FEEL USEFUL PLEASE GIVE +1

0 comments :

Post a Comment

Get Syllabus in your Mail

Labels

Accenture Admission Notice - 2010 Admission Notification Anna University Anna University Chennai Anna University Question Papers Anna University Trichy Apparel Technology and Management Aptitude Questions Arts and Science Colleges Biomedical Engineering C and CPP Ebooks Calicut University CBSE Question papers Civil Engineering Civil Service Exams Colleges in India Colleges Result Computer Science Engineering Core Jobs CS R2008 CSE CSIR NET EBooks Download ECE EEE EIE Electives Electrical and Electronics Engineering Electronics and communication Electronics and Instrumentation Engineering Engineering Engineering Colleges in Maharashtra Engineering Colleges in TamilNadu Engineering Admissions Engineering Colleges Engineering Colleges in Karnataka Engineering Jobs Engineering Syllabus Entrance Exam Dates Entrance Exam Results Entrance Examination Exam Time Table Experiencer First Year Syllabus Freshers Full Time Jobs Government jobs in india Hardware and Networking Jobs Hotel Management and Catering Technology IGNOU Information Technology INTEVIEW QUESTIONS IT Jobs JNTU Question Papers Jobs in Bangalore Jobs in Chennai Jobs in Coimbatore Jobs in Delhi Jobs in Hyderabad Jobs in India Jobs in Kerala Jobs in Noida Jobs in Tamilnadu Jobs in TATA Karnataka Educations Lab Manuals Mechanical Engineering Medical Colleges Placement Papers Plus 2 Preparation for exams Private Jobs in India Question Papers Question Papers Download Results Announcement Semester 1 Semester 2 Semester 3 Semester 4 Semester 5 Semester 6 Semester 7 Semester 8 Syllabus Syllabus Download Tamil Movie TCS Placement Papers Teaching Jobs TECH MAHINDRA Textile Technology Top colleges University Results UPSC VICEVESVARAYA TECHNOLOGICAL UNIVERSITY waec Walk-in Interview Web Designers

Followers

Archive

Anna university Engineering Syllabus

Earn Money From Online

Government jobs in india

Admission Notification

Total Pageviews

 

Privacy Policy
http://topengineeringcollegesintamilnadu.blogspot.com use third-party advertising companies to serve ads when you visit our website. These companies may use information (not including your name, address, email address, or telephone number) about your visits to this and other websites in order to provide advertisements about goods and services of interest to you. If you would like more information about this practice and to know your choices about not having this information used by these companies, click here.